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Abstract  
The paper describes the design philosophy of Algovision, a collection of algorithm visualization 
applets that was developed at Charles University as a support for the Algorithm and Data Structures 
course. It is argued that a successful algorithm visualization applet should be a complex system that 
helps a student to understand why the applet works, i.e. to understand an algorithmic idea that is 
behind.. In certain cases we even use animations of mathematical proofs. Many other features must 
also be provided, explaining, e.g., implementation issues, applications etc 
 
Keywords: Algorithm animation, algorithm verification, algorithm teaching 
 
1. Introduction 
Algorithm animation is a term that denotes a visual presentation of algorithms using images that 
change in time. 
An algorithm is a sequence of instructions that tells a human or a computing device what specific 
steps to perform (in what specific order) in order to carry out a specified task. In computer science, 
algorithm usually operates on mathematical objects like matrices, graphs, geometrical bodies etc. 
Therefore, when describing, teaching or learning an algorithm, we have first specify objects that the 
algorithm manipulates (that translate into variables or data structures of the corresponding computer 
code) and then a sequence of operations that is performed on the objects (that translate into 
instructions of the code). 
Recent information and communication technologies provide tools for presenting information in a 
visual form that changes in time and as a response of actions of a viewer or user of the system. It is 
not surprising that many teachers of mathematics and computer science immediately recognized 
potential of ICT in algorithm teaching/learning. It seems that it is sufficient to choose a visual 
representation of data structures and to show how they change in time during computation. 
Standard ways of static visual representation of mathematical objects can be found in textbooks, 
e.g., matrices as square tables of numbers, graphs as a collection of circles representing nodes that 
are evenly placed in an area of the plane and are connected by lines representing edges, geometric 
bodies by their photography-like projection into plane etc. 
Evolution of data structures is usually done either by a discontinuous replacement of the previous 
value, form or shape by a new one or by some kind of a continuous transformation over certain time 
interval. 
Even though algorithm animation can be traced to earlier times (the used technology being TV or a 
classical movie, see e.g. [Ba81]), a true advent of algorithm animation occurred in 90’s when 
personal computers and graphical terminals became widely available. A large number of systems 
have been developed, e.g. BALSA, ZEUS, Tango, Polka, Samba, for an extensive overview see 
[KS02] and [SDBP]. An even larger number of ad-hoc animations can be found at the web. 
However, even during 90’s it had been recognized that a use of algorithm animation in algorithm 
teaching is far behind our original expectations and this state persists until now. E.g., J. Stasko, one 
of the leading experts in algorithm animation, said in 1996 ([KS96]) that “A number of studies have 



found that using animation for explaining dynamic systems had less beneficial effects on learning 
than hoped. Those results come as a surprise to many instructors and students in computer science 
where animation is becoming an increasingly popular tool for teaching algorithms.“ 
Several approaches were tried to make a use of algorithm animation more frequent. One direction of 
development was based on the assumption that use of algorithm animation is restricted because 
writing a good animation requires enormous effort and aimed to development of systems for 
transforming computer programs into animations automatically. Another researchers and teachers 
believed that student themselves should write animations using systems supporting such activity. 
All approaches that were oriented to systems for animation writing rather than to animations were 
successful only partially. We will discuss this issue later. 
 
2. Animal or anima? 
When speaking about algorithm animation, many people believe that the term “animation” comes 
from the word “animal” – a living being that moves, follows sometimes quite complicated but fixed 
patterns of behavior but it doesn’t posses higher intellectual abilities. Indeed, this is supported by 
many existing algorithm animations that move, follow sometimes quite complicated hidden scheme, 
but a viewer, unless he or she understands the animated algorithm well, is not able to figure out 
what is going on the screen or display. 
However, the true root of “animation” is a latin word “anima” that means “soul”. A problem of a 
typical algorithm animation is that it lacks soul or, better to say, it does not aim to reveal the soul of 
the algorithm. By this, we mean an algorithmic idea that is behind the computational process. 
Creative scientists have intuition; they “see” the principle of an algorithm in a way that is difficult 
to express and which imply not only how the algorithm works, but also why it works. (This, of 
course, is not limited to algorithms, but is common to all sciences.) Many of them admit that 
intuition manifests in form of images that appear in their mind, and it would be sufficient to project 
the images to display. 
It is obvious that the last sentence of the previous paragraph is just a metaphor. Like tao, an 
intuition that can be spoken is not the true intuition; “spoken” should be understood in the broadest 
sense to involve an explicit visual representation. “Images” in mind are vague and they definitely 
can’t be grasped; perhaps they are not images at all. 
Fortunately, there is a way to define a notion of an “idea behind an algorithm” in a strict 
mathematical sense. The formalism comes from a theory of program verification. An input for a 
program verifier is a program plus two logical formulae. The goal is to prove that the program 
applied to input data verifying the first formula stops after finite number of steps and gives an 
output that verifies the second formula. 
A method to prove halting is to find a function that maps any possible collection of values of 
variables of the program into an element of a well-ordered set (e.g., non-negative integers) and to 
prove that the value of the function decreases during each step of the computation. The initial value 
of the function gives usually information about the time complexity of the program. 
A method to prove correctness of the output (i.e., that the output verifies the second formula) is to 
find a third logical formula, called an invariant, such that (i) the input formula implies the invariant, 
(ii) the invariant together with conditions that are fulfilled when the program terminates imply the 
output formula, and (iii) during any elementary step of the computation the validity of the invariant 
is preserved. 
Once an invariant and a termination function are given, it is usually quite simple (though often very 
tedious) to prove that the termination function strictly decreases and the invariant remains satisfied. 
The main problem is, however, how to find a proper invariant and a termination function. Using 



unsolvability of halting problem, it can be inferred that an invariant and a termination function can’t 
be found algorithmically. 
When asked by students how to find an invariant for a given program, I usually answer that this task 
is in fact quite simple. One has to understand what the program is doing and then it is rather 
straightforward to figure out logical constraints that are verified by the values of the variables, and 
it is sufficient to write them down. 
Conversely, knowledge of an invariant tells a user what is the goal of the computation. E.g., the 
Dijkstra’s shortest path algorithm marks certain nodes as definitive; at the beginning only the source 
is definitive and the algorithm stops when all nodes are definitive. The termination function is the 
number of nodes that are not definitive, and the invariant says that the estimation of the cost of a 
node u (a variable that is maintained by the algorithm) is always the length of the shortest path from 
the source into u. The easily understandable termination function and invariant determine uniquely 
the algorithm: we need a loop that increases the number of definitive nodes by 1 during each 
iteration. Since claiming a node as definitive might violate validity of invariant, the loop body 
involves updating variables in a way that restores the invariant. In this way, understanding the 
Dijkstra’s algorithm means to know that the definitive part of the graph is always in a required state 
while evolving from the initial trivial form to eventually absorb whole graph, i.e. to know the 
invariant. 
Since our goal is to create animations that explain why the algorithm works instead of fabricating 
movies that show what happens, we try to design visual representation in a way that makes it easy 
to see and infer the invariant and/or the termination function. Very often this requires using a new 
way of presenting the data. 
The previous analysis also explains why the two approaches mention above, namely automated 
building of animation from a program and animations created by student do not work as it has been 
expected. 
It is not possible to infer the invariant from a code in an automated way, and therefore the method 
could only produce animations “without soul” that have only limited value (this issue will be 
illustrated in the next section when discussing algorithms of Dijkstra and Bellman-Ford). 
In order to write a good animation, a student should have a prior understanding of the method. This, 
however, reverses the time sequence, since we wanted that a student develops understanding as a 
result of writing an animation. 
 
3. Algovision  
Algovision is a collection of applets that visualize algorithms from different fields of Computer 
Science. Presently the system covers data structures (lists, trees, heaps), sorting (Mergesort, 
Quicksort, Heapsort, Bubblesort), graph algorithms (searching and components, shortest path, 
minimum spanning trees, flows in networks – both path augmenting and preflow push), arithmetic 
algorithms (carry look-ahead addition and FFT), geometric algorithms (convex hull and Voronoi 
diagram in 2D) and linear optimization (simplex algorithm in 2D and 3D). The collection 
essentially covers a 2 semester course on algorithms and data structures for undergraduate computer 
science students at Charles University. 
Algovision philosophy is the one described in the previous section. The system is not an 
implementation of previous theoretical issues; conversely, our philosophy developed together with 
the development of the system that was originally conceived as a collection of standard “animal” 
animations. As Algovision was used in the class, it soon became apparent that a teacher needs much 
more features than a simple-minded animation, which even turned out to be almost useless. 
Therefore the applets were extended to cover at least partially the other parts of the lecture, namely 



the analysis of correctness, termination and computational complexity, and the previous section is a 
conclusion of the development process. 
Now the Algovision philosophy will be illustrated on several applets. Let us start with two shortest 
path algorithms – Dijkstra and Bellman-Ford. Both of them can be viewed as an implementation of 
a single general labeling scheme; the only difference being that Dijkstra’s algorithm uses a priority 
queue (among all reached but unprocessed nodes, it chooses the one with the smaller cost 
estimation), while the algorithm of Bellman and Ford uses a FIFO queue (the oldest node in the 
queue is selected). This would suggest that the same animation idea is used in both cases, and this is 
really the case for most of the available shortest path animations (and for the Algovision applets in 
the “what happens” mode). 
However, there is striking difference in behavior of these two algorithms that is also reflected by 
completely different invariants used to prove termination and correctness. 
The Dijkstra’s algorithm applet in Algovision, when in the “why” mode, redraws the input graph in 
such a way that the x-coordinate of any node is proportional to the cost estimation of the node. 
Hence, as the cost estimation decreases during the computation, a node moves left. Positions of 
nodes make it easy to understand how the computation works. 
When computing using Bellman-Ford algorithm, nodes receive the final value of the cost estimation 
(equal to their cost) in an order that is the same as a BFS order in the tree of shortest paths. Thus, 
the idea behind the correctness and termination proof is best explained when the computation is first 
animated in the standard way using the original placement of nodes, the tree of shortest paths is 
shown, nodes are reshuffled so that their x-coordinate is proportional their depth in the tree and the 
computation is performed again. During the repeated computation, receiving the final cost by a 
node appears as a clearly visible left-to-right “wave” that has natural phases that correspond to 
processing layers of the shortest paths tree. After this animation, most student do not need teacher’s 
explanation that the computation decomposes into N phases of complexity O(M), where N (M, 
resp.) is the number of nodes (edges, resp.) of the graph. 
Similar re-drawing of an input graph in order to visualize invariants is successfully used for some 
other graph algorithms as well. 
Another type of algorithms are those using a Boolean circuit as a computational model. Examples in 
Algovision are binary addition, Fast Fourier Transform and bitonic sorting network. The last one is 
a nice example, where we are using three “orthogonal” animations for a single algorithm. First, a 
recursive construction of the circuit is shown, starting with a single black box with hidden internal 
structure, which is disclosed in steps until the complete structure of the network is shown. In the 
same time, at each stage of the construction process, the computation can be animated by showing 
how the input sequence is transformed step by step at any already disclosed stage into the final 
sorted sequence. Third, in order to prove properties of the bitonic sorter, we need a mathematical 
lemma about separation of bitonic sequences that is proved using the third animation. 
Proofs of mathematical statements are frequently constructive proofs based on a more or less 
complex algorithm that is used to construct the entity the existence of which is being demonstrated. 
A simple way of explaining the proof is by animating the proof algorithm. It is clear that in this case 
it is not too important what happens, but why it happens, and therefore the ideas explained above 
are very useful if not necessary. 
 
4. Additional features of educational applets 
Visualization of invariants is a feature that is necessary but not sufficient to create an animation 
useful in algorithm teaching. The termination and correctness proofs are only a part of the stuff that 
should be explained. E.g., it is quite frequent that certain implementation details like proper or 
convenient data structures are important. 



The Fortune’s algorithm for a planar Voronoi diagram uses a “beachline”, a sequence of parabolic 
arcs that presents a boundary of the region where enough information is available to draw segments 
of the diagram. A search of the beachline arcs can take linear time (wrt the number of sites), but it 
can be performed in logarithmic time is a binary search tree is built above the set of arcs. Our applet 
makes it possible to visualize the tree that evolves as the computation (a line sweep) is going on. 
When the computation is interrupted, a search of a proper arc of the beachline can be animated in 
the search tree. 
In certain cases, small virtual calculators are very helpful. When explaining the discrete Fourier 
transform, a student can use a spectral calculator that, given an input function described by a 
mathematical formula or drawn at the display, computes the spectrum of the function. A calculator 
is very helpful when used in the reverse sense, when a student can set components of the spectrum 
manually using visual sliding controls, and his or her task is to match the given function. A good 
understanding of the meaning of the spectrum components can be developed using the calculator. 
 
5. Conclusions 
Algorithm visualization is a very useful tool for teaching of algorithms, but only if it does not 
suggest a simple animation, but it involves additional features that make it possible to visualize 
anything that is necessary to prove the correctness and termination of the algorithm, implementation 
issues, applications etc. As a result, visualization systems are very complex software systems that 
have a number of different components that can be used together. 
We strongly believe that there is no uniform way to build such systems, but any algorithm needs a 
method that is tailored to capture its specific properties. Only if built in this way, it can make 
teaching of an algorithm easy and/or represent a useful tool for distant learning or e-learning. 
 
6. References: 
[Ba81] Baecker, R. (assistance Sherman, D.) Sorting Out Sorting, 30’ color film, Morgan 
Kaufmann Publ., 1981. 
[KS96] Kehoe, C. M., Stasko, J. T., Using Animations to Learn about Algorithms: An Ethnographic 
Case Study, Georgia Institute of Technology Technical Report GIT-GVU-96-20  
[KS02] Kerren, A. and Stasko, J., "Algorithm Animation - Introduction", Software Visualization 
State of the Art Survey, Springer Lecture Notes in Computer Science LNCS 2269, Editor: Stephan 
Diehl, 2002, Chapter 1, pp. 1-15. 
[SDBP] Stasko, J., Domingue, J., Brown, M.H., Price, B.A., Software Visualization, MIT Press, 
1998. 


