
Algovision or how to animate algorithms

Luděk Kučera
Charles University, Prague, Czech Republic

ludek@kam.mff.cuni.cz

Abstract
The paper describes the design philosophy of Algovision, a collection of algorithm visualization
applets that was developed at Charles University as a support for the Algorithm and Data Structures
course. It is argued that a successful algorithm visualization applet should be a complex system that
helps a student to understand why the applet works, i.e. to understand an algorithmic idea that is
behind.. In certain cases we even use animations of mathematical proofs. Many other features must
also be provided, explaining, e.g., implementation issues, applications etc

Keywords: Algorithm animation, algorithm verification, algorithm teaching

1. Introduction
Algorithm animation is a term that denotes a visual presentation of algorithms using images that
change in time.
An algorithm is a sequence of instructions that tells a human or a computing device what specific
steps to perform (in what specific order) in order to carry out a specified task. In computer science,
algorithm usually operates on mathematical objects like matrices, graphs, geometrical bodies etc.
Therefore, when describing, teaching or learning an algorithm, we have first specify objects that the
algorithm manipulates (that translate into variables or data structures of the corresponding computer
code) and then a sequence of operations that is performed on the objects (that translate into
instructions of the code).
Recent information and communication technologies provide tools for presenting information in a
visual form that changes in time and as a response of actions of a viewer or user of the system. It is
not surprising that many teachers of mathematics and computer science immediately recognized
potential of ICT in algorithm teaching/learning. It seems that it is sufficient to choose a visual
representation of data structures and to show how they change in time during computation.
Standard ways of static visual representation of mathematical objects can be found in textbooks,
e.g., matrices as square tables of numbers, graphs as a collection of circles representing nodes that
are evenly placed in an area of the plane and are connected by lines representing edges, geometric
bodies by their photography-like projection into plane etc.
Evolution of data structures is usually done either by a discontinuous replacement of the previous
value, form or shape by a new one or by some kind of a continuous transformation over certain time
interval.
Even though algorithm animation can be traced to earlier times (the used technology being TV or a
classical movie, see e.g. [Ba81]), a true advent of algorithm animation occurred in 90’s when
personal computers and graphical terminals became widely available. A large number of systems
have been developed, e.g. BALSA, ZEUS, Tango, Polka, Samba, for an extensive overview see
[KS02] and [SDBP]. An even larger number of ad-hoc animations can be found at the web.
However, even during 90’s it had been recognized that a use of algorithm animation in algorithm
teaching is far behind our original expectations and this state persists until now. E.g., J. Stasko, one
of the leading experts in algorithm animation, said in 1996 ([KS96]) that “A number of studies have

found that using animation for explaining dynamic systems had less beneficial effects on learning
than hoped. Those results come as a surprise to many instructors and students in computer science
where animation is becoming an increasingly popular tool for teaching algorithms.“
Several approaches were tried to make a use of algorithm animation more frequent. One direction of
development was based on the assumption that use of algorithm animation is restricted because
writing a good animation requires enormous effort and aimed to development of systems for
transforming computer programs into animations automatically. Another researchers and teachers
believed that student themselves should write animations using systems supporting such activity.
All approaches that were oriented to systems for animation writing rather than to animations were
successful only partially. We will discuss this issue later.

2. Animal or anima?
When speaking about algorithm animation, many people believe that the term “animation” comes
from the word “animal” – a living being that moves, follows sometimes quite complicated but fixed
patterns of behavior but it doesn’t posses higher intellectual abilities. Indeed, this is supported by
many existing algorithm animations that move, follow sometimes quite complicated hidden scheme,
but a viewer, unless he or she understands the animated algorithm well, is not able to figure out
what is going on the screen or display.
However, the true root of “animation” is a latin word “anima” that means “soul”. A problem of a
typical algorithm animation is that it lacks soul or, better to say, it does not aim to reveal the soul of
the algorithm. By this, we mean an algorithmic idea that is behind the computational process.
Creative scientists have intuition; they “see” the principle of an algorithm in a way that is difficult
to express and which imply not only how the algorithm works, but also why it works. (This, of
course, is not limited to algorithms, but is common to all sciences.) Many of them admit that
intuition manifests in form of images that appear in their mind, and it would be sufficient to project
the images to display.
It is obvious that the last sentence of the previous paragraph is just a metaphor. Like tao, an
intuition that can be spoken is not the true intuition; “spoken” should be understood in the broadest
sense to involve an explicit visual representation. “Images” in mind are vague and they definitely
can’t be grasped; perhaps they are not images at all.
Fortunately, there is a way to define a notion of an “idea behind an algorithm” in a strict
mathematical sense. The formalism comes from a theory of program verification. An input for a
program verifier is a program plus two logical formulae. The goal is to prove that the program
applied to input data verifying the first formula stops after finite number of steps and gives an
output that verifies the second formula.
A method to prove halting is to find a function that maps any possible collection of values of
variables of the program into an element of a well-ordered set (e.g., non-negative integers) and to
prove that the value of the function decreases during each step of the computation. The initial value
of the function gives usually information about the time complexity of the program.
A method to prove correctness of the output (i.e., that the output verifies the second formula) is to
find a third logical formula, called an invariant, such that (i) the input formula implies the invariant,
(ii) the invariant together with conditions that are fulfilled when the program terminates imply the
output formula, and (iii) during any elementary step of the computation the validity of the invariant
is preserved.
Once an invariant and a termination function are given, it is usually quite simple (though often very
tedious) to prove that the termination function strictly decreases and the invariant remains satisfied.
The main problem is, however, how to find a proper invariant and a termination function. Using

unsolvability of halting problem, it can be inferred that an invariant and a termination function can’t
be found algorithmically.
When asked by students how to find an invariant for a given program, I usually answer that this task
is in fact quite simple. One has to understand what the program is doing and then it is rather
straightforward to figure out logical constraints that are verified by the values of the variables, and
it is sufficient to write them down.
Conversely, knowledge of an invariant tells a user what is the goal of the computation. E.g., the
Dijkstra’s shortest path algorithm marks certain nodes as definitive; at the beginning only the source
is definitive and the algorithm stops when all nodes are definitive. The termination function is the
number of nodes that are not definitive, and the invariant says that the estimation of the cost of a
node u (a variable that is maintained by the algorithm) is always the length of the shortest path from
the source into u. The easily understandable termination function and invariant determine uniquely
the algorithm: we need a loop that increases the number of definitive nodes by 1 during each
iteration. Since claiming a node as definitive might violate validity of invariant, the loop body
involves updating variables in a way that restores the invariant. In this way, understanding the
Dijkstra’s algorithm means to know that the definitive part of the graph is always in a required state
while evolving from the initial trivial form to eventually absorb whole graph, i.e. to know the
invariant.
Since our goal is to create animations that explain why the algorithm works instead of fabricating
movies that show what happens, we try to design visual representation in a way that makes it easy
to see and infer the invariant and/or the termination function. Very often this requires using a new
way of presenting the data.
The previous analysis also explains why the two approaches mention above, namely automated
building of animation from a program and animations created by student do not work as it has been
expected.
It is not possible to infer the invariant from a code in an automated way, and therefore the method
could only produce animations “without soul” that have only limited value (this issue will be
illustrated in the next section when discussing algorithms of Dijkstra and Bellman-Ford).
In order to write a good animation, a student should have a prior understanding of the method. This,
however, reverses the time sequence, since we wanted that a student develops understanding as a
result of writing an animation.

3. Algovision
Algovision is a collection of applets that visualize algorithms from different fields of Computer
Science. Presently the system covers data structures (lists, trees, heaps), sorting (Mergesort,
Quicksort, Heapsort, Bubblesort), graph algorithms (searching and components, shortest path,
minimum spanning trees, flows in networks – both path augmenting and preflow push), arithmetic
algorithms (carry look-ahead addition and FFT), geometric algorithms (convex hull and Voronoi
diagram in 2D) and linear optimization (simplex algorithm in 2D and 3D). The collection
essentially covers a 2 semester course on algorithms and data structures for undergraduate computer
science students at Charles University.
Algovision philosophy is the one described in the previous section. The system is not an
implementation of previous theoretical issues; conversely, our philosophy developed together with
the development of the system that was originally conceived as a collection of standard “animal”
animations. As Algovision was used in the class, it soon became apparent that a teacher needs much
more features than a simple-minded animation, which even turned out to be almost useless.
Therefore the applets were extended to cover at least partially the other parts of the lecture, namely

the analysis of correctness, termination and computational complexity, and the previous section is a
conclusion of the development process.
Now the Algovision philosophy will be illustrated on several applets. Let us start with two shortest
path algorithms – Dijkstra and Bellman-Ford. Both of them can be viewed as an implementation of
a single general labeling scheme; the only difference being that Dijkstra’s algorithm uses a priority
queue (among all reached but unprocessed nodes, it chooses the one with the smaller cost
estimation), while the algorithm of Bellman and Ford uses a FIFO queue (the oldest node in the
queue is selected). This would suggest that the same animation idea is used in both cases, and this is
really the case for most of the available shortest path animations (and for the Algovision applets in
the “what happens” mode).
However, there is striking difference in behavior of these two algorithms that is also reflected by
completely different invariants used to prove termination and correctness.
The Dijkstra’s algorithm applet in Algovision, when in the “why” mode, redraws the input graph in
such a way that the x-coordinate of any node is proportional to the cost estimation of the node.
Hence, as the cost estimation decreases during the computation, a node moves left. Positions of
nodes make it easy to understand how the computation works.
When computing using Bellman-Ford algorithm, nodes receive the final value of the cost estimation
(equal to their cost) in an order that is the same as a BFS order in the tree of shortest paths. Thus,
the idea behind the correctness and termination proof is best explained when the computation is first
animated in the standard way using the original placement of nodes, the tree of shortest paths is
shown, nodes are reshuffled so that their x-coordinate is proportional their depth in the tree and the
computation is performed again. During the repeated computation, receiving the final cost by a
node appears as a clearly visible left-to-right “wave” that has natural phases that correspond to
processing layers of the shortest paths tree. After this animation, most student do not need teacher’s
explanation that the computation decomposes into N phases of complexity O(M), where N (M,
resp.) is the number of nodes (edges, resp.) of the graph.
Similar re-drawing of an input graph in order to visualize invariants is successfully used for some
other graph algorithms as well.
Another type of algorithms are those using a Boolean circuit as a computational model. Examples in
Algovision are binary addition, Fast Fourier Transform and bitonic sorting network. The last one is
a nice example, where we are using three “orthogonal” animations for a single algorithm. First, a
recursive construction of the circuit is shown, starting with a single black box with hidden internal
structure, which is disclosed in steps until the complete structure of the network is shown. In the
same time, at each stage of the construction process, the computation can be animated by showing
how the input sequence is transformed step by step at any already disclosed stage into the final
sorted sequence. Third, in order to prove properties of the bitonic sorter, we need a mathematical
lemma about separation of bitonic sequences that is proved using the third animation.
Proofs of mathematical statements are frequently constructive proofs based on a more or less
complex algorithm that is used to construct the entity the existence of which is being demonstrated.
A simple way of explaining the proof is by animating the proof algorithm. It is clear that in this case
it is not too important what happens, but why it happens, and therefore the ideas explained above
are very useful if not necessary.

4. Additional features of educational applets
Visualization of invariants is a feature that is necessary but not sufficient to create an animation
useful in algorithm teaching. The termination and correctness proofs are only a part of the stuff that
should be explained. E.g., it is quite frequent that certain implementation details like proper or
convenient data structures are important.

The Fortune’s algorithm for a planar Voronoi diagram uses a “beachline”, a sequence of parabolic
arcs that presents a boundary of the region where enough information is available to draw segments
of the diagram. A search of the beachline arcs can take linear time (wrt the number of sites), but it
can be performed in logarithmic time is a binary search tree is built above the set of arcs. Our applet
makes it possible to visualize the tree that evolves as the computation (a line sweep) is going on.
When the computation is interrupted, a search of a proper arc of the beachline can be animated in
the search tree.
In certain cases, small virtual calculators are very helpful. When explaining the discrete Fourier
transform, a student can use a spectral calculator that, given an input function described by a
mathematical formula or drawn at the display, computes the spectrum of the function. A calculator
is very helpful when used in the reverse sense, when a student can set components of the spectrum
manually using visual sliding controls, and his or her task is to match the given function. A good
understanding of the meaning of the spectrum components can be developed using the calculator.

5. Conclusions
Algorithm visualization is a very useful tool for teaching of algorithms, but only if it does not
suggest a simple animation, but it involves additional features that make it possible to visualize
anything that is necessary to prove the correctness and termination of the algorithm, implementation
issues, applications etc. As a result, visualization systems are very complex software systems that
have a number of different components that can be used together.
We strongly believe that there is no uniform way to build such systems, but any algorithm needs a
method that is tailored to capture its specific properties. Only if built in this way, it can make
teaching of an algorithm easy and/or represent a useful tool for distant learning or e-learning.

6. References:
[Ba81] Baecker, R. (assistance Sherman, D.) Sorting Out Sorting, 30’ color film, Morgan
Kaufmann Publ., 1981.
[KS96] Kehoe, C. M., Stasko, J. T., Using Animations to Learn about Algorithms: An Ethnographic
Case Study, Georgia Institute of Technology Technical Report GIT-GVU-96-20
[KS02] Kerren, A. and Stasko, J., "Algorithm Animation - Introduction", Software Visualization
State of the Art Survey, Springer Lecture Notes in Computer Science LNCS 2269, Editor: Stephan
Diehl, 2002, Chapter 1, pp. 1-15.
[SDBP] Stasko, J., Domingue, J., Brown, M.H., Price, B.A., Software Visualization, MIT Press,
1998.

